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Abstract—The successful design and implementation of a 
compact antenna test range (CATR) is predicated upon the 
availability of highly accurate and precise computational 
electromagnetic (CEM) modelling tools.  As the accuracy of these 
models is paramount to both the design of the CATR and the 
subsequent determination of the facility level uncertainty budget, 
this paper presents an accuracy evaluation of five different CEM 
simulations.  We report results using methods of CATR 
modelling including: geometrical-optics with geometrical theory 
of diffraction, plane-wave spectrum, Kirchhoff-Huygens and 
current element, before presenting results of their use in the far-
field antenna pattern measurement prediction for given CATR-
AUT combinations. 

I. INTRODUCTION 

The single-offset compact antenna test range (CATR) is a 
widely deployed technique for broadband characterization of 
electrically large antennas at reduced range lengths [1].  The 
nature of the curvature and position of the offset parabolic 
reflector as well as the edge geometry ensures that the resulting 
collimated field is comprised of a pseudo transverse electric 
and magnetic (TEM) wave.  Thus, by projecting an image of 
the feed at infinity, the CATR synthesizes the type of wave-
front that would be incident on the antenna under test (AUT) if 
it were located very much further away from the feed than is 
actually the case with the coupling of the plane-wave into the 
aperture of the AUT creating the classical measured “far-field” 
radiation pattern.  The accuracy of a pattern measured using a 
CATR is primarily determined by the phase and amplitude 
quality of the pseudo plane-wave incident on the AUT 
aperture, with this being restricted by two main factors: 
amplitude taper (which is imposed by the pattern of the feed), 
and reflector edge diffraction, which usually manifests as a 
high spatial frequency ripple in the pseudo plane wave [2].  It 
has therefore become customary to specify CATR performance 
in terms of amplitude taper, and amplitude & phase ripple of 
this wave over a volume of space, termed the quiet-zone (QZ).  
Unfortunately, in most cases it is not directly apparent how a 
given QZ performance specification will manifest itself on the 
resulting antenna pattern measurement.  However, with the 
advent of powerful digital computers and highly-accurate 
computational electromagnetic (CEM) models, it has now 
become possible to extend the CATR electromagnetic 
simulation to encompass the complete CATR AUT pattern 

measurement process thereby permitting quantifiable 
accuracies to be easily determined prior to actual measurement 
[2, 3, 4, 5].  As the accuracy of these models is paramount to 
both the design of the CATR and the subsequent determination 
of the uncertainty budget, this paper presents an accuracy 
evaluation of five different CEM simulations.  We report 
results using methods of CATR modelling including: 
geometrical-optics with geometrical theory of diffraction [6], 
plane-wave spectrum [7], Kirchhoff-Huygens [7] and current 
elements [8], before presenting results of their use in the 
antenna pattern measurement prediction for given CATR-AUT 
combinations that allow 360 far-field patterns to be obtained. 

II. OVERVIEW OF THE CATR CONFIGURATION 

A schematic representation of the geometry of a CATR 
configuration can be seen presented in Figure 1.  Here, the 
parabolic reflector had a 3.6576 m (12 foot) focal length.  The 
surface profile of the CATR was assumed to be formed from a 
concave paraboloidal surface.  The reflector surface must be a 
paraboloid of revolution so that the, assumed spherical, 
incident wave propagating from the focus of the reflector is 
collimated into a pseudo plane-wave, represented by the green 
cylinder shown in Figure 1. 

 
Figure 1.  Schematic representation of serrated edge single offset-reflector 

2m x 2m QZ CATR being modelled. 
The CATR reflector edge treatment comprised serrations 

that were formed from triangular petals.  The phase center of 
the feed was placed at the focus of the offset reflector and the 
feed was tilted in elevation by 28.  An 11 dBi WR430 circular 
choked waveguide was used for the feed with far-field pattern 



data being provided by a proprietary full-wave three-
dimensional CEM solver using the finite difference time-
domain technique.  The origin of the CATR co-ordinate system 
was located at the vertex of the parabolic reflector with the QZ 
simulations being computed across a transverse plane at z = 
1.8f where f was the focal length. 

III. OVERVIEW OF SIMULATION METHODS 

The following sections provide an overview of the 
modelling CEM methods harnessed before showing how these 
can be used to provide simulations of far-field antenna pattern 
measurement predictions for given CATR-AUT combinations. 

A. Introduction to Modelling Methods 

The field illuminating the CATR reflector can be 
determined from far-field antenna pattern function of the feed 
by reintroducing the spherical phase function and spherical loss 
factor.  The fields reflected by the, assumed perfect electrical 
conductor (PEC) surface can be obtained from the physical 
optics condition [8].  Many different CEM modelling 
techniques have been harnessed for the prediction of fields in 
the Fresnel-region and these are described in detail within the 
following sections. 

1) Vector Huygens Method (PWS Method) 

The vector Huygens principle can be obtained directly from 
the co-ordinate free form of the plane-wave spectrum method 
(PWS) and can be expressed as [7], 
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Here,  is the free space Green’s function, E is the reflected 
electric field, n is the unit surface normal and ur is the direction 
to the field point P located at (x, y, z), which must be in the far-
field of the infinitesimal radiating elemental Huygens source, 
resulting in the field point being removed from the Huygens 
source by a few wavelengths.  Thus, the total field at a point in 
space can be expressed by integrating across the complete, 
unshaded, reflector surface. 

2) Kirchoff Huygens Method 

The Kirchhoff-Huygens method is a general technique for 
determining the field in a source and sink free region outside a 
surface from knowledge of the field distribution over that 
closed surface [7].  It is applicable to arbitrary but not 
necessarily smoothly shaped apertures over which the 
tangential components of the electric and magnetic fields are 
prescribed.  The Kirchhoff-Huygens method is in essence a 
direct integral of Maxwell’s equations.  The general vector 
Kirchhoff-Huygens formula can be expressed as [7], 
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In addition to the reflected electric fields E, this expression 
requires knowledge of the tangential components of the 
reflected magnetic fields H.  These can be computed from the 
incident magnetic fields using the method of images [8], 

3) Current Elements Method 

The current elements method is an alternative field 
propagation method to those developed above.  The current 
element method replaces the fields with an equivalent surface 
current density Js which is used as an equivalent source to the 
original fields.  The surface current density across the surface 
of the reflector can be obtained from the incident magnetic 
fields and the surface unit normal and is known as the physical-
optics approximation [8].  The fields radiated by an 
infinitesimal electric current element can be obtained from the 
vector potential & the free-space Green’s function using [6, 8], 
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The corresponding elemental electric fields can be 
obtained, to a very good approximation, from the elemental 
magnetic fields using the far-field TEM condition where again, 
the field point only need be in the far-field of the elemental 
source which is a requirement that is easily satisfied when the 
separation is larger than a few wavelengths. 

4) Other Simulations – GO+GTD & FEKO PO 

Two further simulations were utilized within the validation 
campaign.  These were obtained from proprietary modelling 
software that used geometrical optics with geometrical theory 
of diffraction edge correction, courtesy of The Ohio State 
University [9], and FEKO physical optics (and large physical 
optics) solvers [10].  The following section describes how these 
field propagation models can be used to produce complete far-
field antenna pattern measurement predictions for given 
CATR-AUT combinations. 

B. Introduction to Reaction Theorem 

The reaction theorem is a well-known method for analyzing 
coupling problems [2, 7].  This theorem states that, provided 
the electric and magnetic field vectors (E1, H1) and (E2, H2) are 
of the same frequency and monochromatic then the mutual 
impedance, Z21, between two radiators, antenna 1 and 2, in the 
environment described by ,  can be expressed in terms of a 
surface integration [7], 
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Here, n is taken to denote the outward pointing surface unit 
normal.  The subscript 1 denotes parameters associated with 
antenna 1 whilst the subscript 2 denotes quantities associated 
with antenna 2, i.e. S2 is a surface that encloses antenna 2, but 
not antenna 1.  Here, I11 is the terminal current of antenna 1 
when it transmits and similarly, I22 is the terminal current of 
antenna 2 when it transmits.  Note that this integral does not 
compute transferred power as there are no conjugates present 
and as such, crucially, phase information is preserved.  From 
reciprocity, the mutual impedance, Z12 = Z21, and is related to 
the coupling between two antennas.  Clearly then the mutual 
impedance will also be a function of the displacement between 
the antennas, their relative orientations, and their respective 
polarization properties.  As an admittance is merely the 
reciprocal of an impedance, an admittance matrix [Y] 



representing this two port coupled systems can be readily 
populated so that, 
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It is well known that the re-normalized scattering matrix, 
[S], can be calculated from this admittance matrix and is used 
to describe what fraction of the signal is transmitted, or 
reflected at each port of the coupled system [7], 
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Here, [Y] = [Z]-1 and is a diagonal matrix with the desired 
normalizing admittance as the diagonal entries, i.e. the 
admittance of the attached transmission line which in this case 
will be equal to the port impedance Z1 = Z2 = ZTE.  The 
elements S1,2 = S2,1 of [S] are the complex transmission 
coefficients for the coupled antenna system which are taken to 
represent a single point in the far-field measurement.  When 
utilizing this procedure to simulate CATR measurements it is 
crucial to recognize that the fields illuminating the AUT from 
the CATR only need to be computed once per frequency.  This 
is also true for the fields radiated by the AUT.  Thus, in 
principle, it is possible to simulate measured cuts and patterns 
in a computationally efficient manner allowing simulation of 
many different test configurations.  This will be further 
examined in the following section. 

IV. SIMULATION RESULTS 

The five different CEM modelling techniques described 
above were used to compute QZ performance predictions for 
the offset reflector CATR of Figure 1 at a frequency of 2.6 
GHz.  The five simulations all used the same feed pattern and 
range geometry with only the field propagation methodology 
and reflection calculation changing between the respective 
simulations.  The simulations were: Geometrical Optics with 
Geometrical Theory of Diffraction edge correction (GO+GTD), 
Vector Huygens (VH), Kirchhoff Huygens (KH), Current 
Elements (CE) and FEKO Physical Optics (FEKO).  Figure 2 
below presents a comparison of the CATR QZ amplitude 
predictions for the five simulations for the horizontally 
polarized electric field component (Ex) in terms of iso-levels 
(contours) where each of the patterns was normalized to 0 dB 
at the peak of the pattern. 
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Figure 2.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 3.  Comparison of Ey 
polarized QZ amplitude patterns. 

Here, red contours denote GO+UTD, magenta contours 
denote VH, cyan contours denote KH, blue contours denote CE 

based field propagation, whilst black contours represent the 
results from FEKO using PO.  Figure 3 contains an equivalent 
plot for the vertically polarized (cross-polar) electric field 
component, (Ey).  From inspection of these plots it is clear that 
the VH, KH and CE based methods are in very good agreement 
with GO+GTD being in only very slightly less close 
agreement, with the main difference being the presence of 
additional ripple on the GO+GTD QZ predictions.  The general 
levels and shape of all of the patterns, for both the x- and y-
polarized field amplitude plots are very encouraging.  Some 
asymmetry is apparent in the GO+GTD simulations on the y-
polarized (cross-polarized) patterns, which is erroneous as the 
model is inherently symmetrical in the yz-plane.  The feed 
model is not quite perfectly symmetrical which was an artefact 
of small numerical imperfections within the CEM model that 
was used to generate the feed pattern predictions.  A more 
detailed, quantitative, analysis of the degree of agreement 
between these respective results can be found in the open 
literature [11] together with additional comparison plots, where 
further confirmation of the excellent agreement between the 
FEKO PO and CE methods was demonstrated. 

The simulations presented above are based upon 
propagating those fields from the feed that are incident on the 
CATR reflector and arrive at the QZ.  However, as a 
consequence of the geometry of the offset reflector CATR, it is 
possible for the back-lobe of the feed antenna to directly 
illuminate the QZ.  In practice a great deal of time, trouble, and 
effort is invested in minimizing this, which involves the use of 
absorber collars or/and absorber baffles, [1].  However, as part 
of the CATR design process it is useful to be able to determine 
the upper bound, i.e. worst case performance, when feed spill-
over impinges on the QZ unimpeded.  Figures 4 & 5 present Ex 
and Ey amplitude plots that compare the FEKO PO (red-
contours) and the CE QZ predictions for the ideal case where 
there is no direct illumination of the QZ, cf. Figures 2 and 3. 
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Figure 4.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 5.  Comparison of Ey 
polarized QZ amplitude patterns. 
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Figure 6.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 7.  Comparison of Ey 
polarized QZ amplitude patterns. 



Conversely, Figures 6 and 7 present equivalent results for 
the case where the back lobe of the feed is permitted to directly 
illuminate the QZ, based on a feed that has approximately -23 
dBi gain in the direction of the QZ center.  As before the 
agreement between the FEKO PO and CE simulations are 
excellent with contours overlaying down to the -60 dB levels 
thereby lending a great deal of confidence that the models are 
implemented correctly.  As expected, for the case where the 
direct and reflected fields interfere through linear 
superposition, additional ripple is introduced onto the pseudo 
plane-wave through constructive and destructive interference.  
This is in agreement with what is observed in actuality and is 
the principal reason for the use of absorber treatments so as to 
minimize feed spillover [1]. 

The CATR is inherently a very broad-band antenna test 
solution being limited, primarily, at low frequency by the 
electrical size of the reflector(s) and at high frequencies by 
manufacturing tolerance, e.g. reflector surface accuracies & 
roughness [1].  Thus, to illustrate the ability of the CEM 
simulations to obtain a similar degree of agreement across a 
broader range of frequencies comparisons were also made at 
10, 30, and 40 GHz with, as a result of the need for brevity, 
comparisons being presented below for the more demanding 40 
GHz case.  Figures 8 to 11 contain horizontal and vertical 
amplitude and phase plots through the center of the QZ that are 
intended to allow a critical assessment of the degree of 
agreement to be attained.  Here, red traces denote QZ data as 
obtained from FEKO large PO solver, whilst the black traces 
denote results obtained from the CE field propagation.  In each 
of these simulations, QZ feed spill-over has been omitted.  In 
practice, for a CATR to be able to measure the main and cross-
polarized field components of an AUT the CATR feed would 
need to be rotated by 90 about its axis thus the following 
simulations also show predicted CATR QZ plots for the case 
where the feed was sequentially x- and y-polarized within its 
local co-ordinate system. 
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Figure 8.  Comparison H-cut, Ey 
polarized QZ amplitude, V-pol 

feed. 

Figure 9.  Comparison H-cut, Ex 
polarized QZ amplitude, H-pol 

feed. 
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Figure 10.  Comparison H-cut, Ey 
polarized QZ phase, V-pol feed. 

Figure 11.  Comparison of H-cut, Ex 
polarized QZ phase, H-pol feed. 

Here, it is clear that all of the principal polarized cardinal 
cuts are in excellent agreement with the general pattern shapes 
and features being in very close agreement.  The CE 
predictions exhibits some low amplitude high spatial frequency 

ripple that is missing from the FEKO PO model.  The absence 
of the fine structure in the FEKO PO predictions is expected 
and is a consequence of the use of large element approximation 
within the solver, which was a necessary introduction that 
resulted from extended simulation times.  General cross-polar 
levels were also found to be in excellent agreement, with only 
the null-depth changing between the simulations.  The phase 
patterns are also in very good agreement again confirming 
adoption of the same time dependency.  Although not shown, 
some small phase differences are evident but only in regions of 
low field intensity where it is difficult to control phase, e.g. in 
nulls and towards the extremities of the QZ. 

As stated above, the coupling of the pseudo plane-wave 
into the aperture of an AUT creates the classical measured “far-
field” radiation pattern and can be evaluated by performing the 
integration expressed within equation (4).  This integration can 
be performed across any convenient free-space closed surface.  
Although some workers have successfully evaluated this 
integral across planar surfaces [2] a more powerful, generic, 
CATR modelling procedure can be developed if instead a 
spherical surface is utilized.  Figures 12 and 13 illustrate 
respectively the x- and y-polarized electric near-fields of an 
AUT sampled across the surface of sphere of radius of 0.6096 
m (24”).  Here, the amplitude patterns are presented in terms of 
false-color plots over the conceptual spherical integrating 
surface.  Although not shown, the z-polarized electric field and 
corresponding magnetic fields were also obtained from a 
simple CEM model [1].  The corresponding far-fields were also 
determined and are shown below where they are used as a 
“truth” model against which the CATR measurement 
simulation can be gauged.  Figure 14 and 15 present equivalent 
plots for the case where the AUT has been rotated by 40 about 
the positive y-axis as would be required when evaluating the 
corresponding “measured” far-field pattern value at this angle. 

 
Figure 12.  Ex polarized AUT near-

field amplitude pattern. 
Figure 13.  Ey polarized AUT near-

field amplitude pattern. 

 
Figure 14.  Ex polarized rotated AUT 

near-field amplitude pattern. 
Figure 15.  Ey polarized rotated AUT 

near-field amplitude pattern. 



Although any closed surface could be used, the advantage 
of the spherical integration surface is that a general compound 
rotation about the x-, y- and z-axes can be implemented without 
the need to compute fields outside this sampling interval, i.e. 
domain.  Such vector isometric rotations can be implemented 
either approximately through approximation [1, 7] or 
rigorously by expanding the fields onto a set of spherical vector 
mode functions and by rotating those functions [1].  In most 
cases, the choice is unimportant as the near-fields can be 
grossly over sampled, to improve the accuracy of the numerical 
integration, so that the use of approximation typically 
introduces only second order errors.  However, if the fields are 
sampled on an azimuth over elevation tabulating co-ordinate 
system the pattern rotation is reduced to a cyclic permutation of 
the column elements within the data array thereby eliminating 
this source of error.  Thus, in this case, the number of points in 
the azimuth axis of the near-field data was set equal to the 
number of points in the required far-field great-circle azimuth 
simulated measurement cut.  Adoption of an elevation over 
azimuth co-ordinate system would enable the elevation cut to 
be obtained in a similarly rigorous fashion. 

 
Figure 16.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 17.  Comparison of Ey 
polarized QZ amplitude patterns. 

 
Figure 18.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 19.  Comparison of Ey 
polarized QZ amplitude patterns. 

 
Figure 20.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 21.  Comparison of Ey 
polarized QZ amplitude patterns. 

Figure 16 and 17 present, respectively, the Ex and Ey 
polarized fields of the pseudo plane wave as created by the 
CATR.  Although the CATR QZ data presented above were 
sampled across the surface of a plane that was transverse to the 
z-axis of the range, in principle fields can be computed at any 
point in space providing that point is more than a few 

wavelengths from the surface of the reflector and outside of the 
geometric shadow region.  Consequently, it is possible to place 
the spherical integrating surface in various positions throughout 
the QZ.  This corresponds to making a measurement with the 
AUT located at different positions within the QZ.  Figures 18 
and 19 present corresponding CATR QZ data for the case 
where the sphere was translated to the bottom of the QZ where 
the zenith of the sphere was aligned with the bottom of the 
CATR reflector (before the serrations started).  Conversely, 
Figure 20 and 21 show equivalent patterns for the case where 
the origin of the sphere was aligned with a projection of the 
vertex of the parabolic reflector, i.e. the sphere located half 
outside of the CATR QZ in what is far from an optimum 
position.  Here, it is possible to clearly see the degradation in 
the performance of the pseudo plane wave at the extremities as 
the uniformity in the amplitude of the x-polarized electric field 
is greatly reduced, cf. Figure 20 and Figure 16.  Thus, by 
computing the reaction of the sequentially rotated AUT (as 
illustrated in Figures 12 – 15) with the translated CATR fields 
(as illustrated in Figures 16 – 21) it is possible to compute, in a 
very general sense, the simulated far-field CATR measurement 
of a given AUT. 
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Figure 22.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 23.  Comparison of Ey 
polarized QZ amplitude patterns. 
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Figure 24.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 25.  Comparison of Ey 
polarized QZ amplitude patterns. 
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Figure 26.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 27.  Comparison of Ey 
polarized QZ amplitude patterns. 

The red trace that can be seen in Figure 22 contains a plot 
of the ideal far-field pattern of the 2.6 GHz AUT (that was used 
to compute the spherical near-fields shown in Figures 12 and 
13).  The blue trace corresponds to specifying the pseudo plane 
wave as being that of a perfect TEM wave propagating in the z-
axis and then using the reaction integral to evaluate the coupled 
fields.  This process of rotating and integrating implements a 
spherical near-field to far-field transform.  The agreement 
between the red and blue traces for the amplitude and phase 



plots (Figure 23) confirms the validity of the approach.  The 
black trace denotes the simulated measured far-field pattern 
that is obtained when using the pseudo plane wave that is 
generated by the offset parabolic reflector CATR.  Here, from 
inspection of the agreement between the simulated measured 
far-field pattern and the ideal far-field amplitude and phase 
patterns is very encouraging.  This is further corroborated by 
the low level of the equivalent multipath level (EMPL) trace [1, 
7], shown in magenta on Figure 22.  The EMPL is a 
quantitative objective measure of the adjacency between two 
patterns with better agreement being denoted with increasing 
large negative dB values.  Here, the peak EMPL between the 
ideal and simulated measured far-field pattern is circa -48 dB.  
When the AUT is translated to the lower edge of the CATR QZ 
it can be seen that the degree of agreement slightly degrades as 
the EMPL level, as shown in Figure 24, increases by circa 2 
dB.  However, once the AUT is translated so as to be situated 
level with the vertex of the reflector, i.e. outside of the classical 
QZ region, it is clear that from inspection of Figure 26 the 
simulated CATR measurement is grossly distorted with 
significant differences becoming apparent and the peak EMPL 
level increasing to circa -16 dB.  This is to be expected and is 
further confirmation that this new CATR measurement 
simulation is producing reliable results.  Crucially, the CATR 
simulation technique is also able to provide phase data cf. 
Figure 23.  This is a crucial feature of the very general 
simulation technique. 

By way of a further confirmation, and verification that this 
technique could be utilized at higher frequencies involving 
electromagnetically larger problems, this simulation was 
repeated for the case of an x-band (10 GHz) antenna.  
Similarly, results for the case where the AUT was located at the 
center of the QZ and for the case where the AUT was situated 
at the lower edge of the QZ can be found presented in Figures 
28 and 29, and Figures 30 and 31 respectively.  As before, the 
EMPL was computed and can be seen presented in the figures 
as the magenta trace.  As was previously noted the peak EMPL 
increases slightly, circa 6 dB, as the AUT is positioned towards 
the extremities of the QZ. 
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Figure 28.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 29.  Comparison of Ey 
polarized QZ amplitude patterns. 

-150 -100 -50 0 50 100 150
-70

-60

-50

-40

-30

-20

-10

0

Az (deg)

A
m

pl
itu

de
 (

dB
)

Simulted measurement of SGH in CATR Freq 10 (GHz)

 

 

Far-field Pattern

Ideal QZ
Simulated QZ

EMPL

 
-150 -100 -50 0 50 100 150

-150

-100

-50

0

50

100

150

Az (deg)

A
m

pl
itu

de
 (

dB
)

Simulted measurement of SGH in CATR Freq 10 (GHz)

 

 

Far-field Pattern

Ideal QZ
Simulated QZ

Figure 30.  Comparison of Ex 
polarized QZ amplitude patterns. 

Figure 31.  Comparison of Ey 
polarized QZ amplitude patterns. 

Here, in both the s- and x-band simulations it can be seen 
from the EMPL result that the largest uncertainties are located 
in the near pattern angle with perhaps the peak of the first side-
lobe level suffering from the largest error, cf. [4, 12].  This is in 
agreement with what is commonly observed in practice when 
using a “far-field” direct antenna pattern measurement when 
the incident plane wave has quadratic phase error resulting 
from different far-field distances [8]. 

V. SUMMARY AND CONCLUSIONS 

This paper presented the preliminary results of an extensive 
validation campaign for a new CATR CEM simulation tool that 
permits the derivation of the error to signal level for a specified 
AUT and CATR combination.  Thus, for the first time, in 
addition to being able to provide conventional CATR QZ 
performance predictors such as amplitude taper, amplitude and 
phase peak-to-peak ripple, it is also possible to provide full-
sphere simulated measured data for a given CATR AUT 
combination.  The future work is to include obtaining further 
numerical verification of the FF-MARS multipath suppression 
technique. 
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